Модуль m и число зубьев z являются основными величинами, определяющими зубчатые зацепления. Значение модулей для всех передач - величина стандартизированная, выраженная, как видно из формулы m = d/z, в миллиметрах. Ниже преведены числовые величины стандартных модулей, применяемые при изготовлении зубчатых колес, по ГОСТ 9563-60 (СТ СЭВ 310-76):

1-й ряд, мм.: 0,05; 0,06; 0,08; 0,1; 0,12; 0,15; 0,2; 0,25; 0,3; 0,4; 0,5; 0,6; 0,8; 1; 1,25; 1,5; 2; 2,5; 3; 4,5; 6; 8; 10; 12; 16; 20; 25; 32; 40; 50; 60; 80; 100.

2-й ряд, мм.: 0,055; 0,07; 0,09; 0,11; 0,22; 0,28; 0,35; 0,45; 0,55; 0,7; 0,9; 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7; 9; 11; 14; 18; 22; 28; 36; 45; 55; 70; 90.

При назначении величин модулей первый ряд следует предпочитать второму.

Зубчатые передачи. Общие сведения и классификация зубчатых передач

Механизм, в котором два подвижных звена являются зубчатыми ко лесами, образующими с неподвижным звеном вращательную или поступатель ную пару, называют зубчатой передачей (рис. 1).

Рис. 1. Виды зубчатых передач: а, б, в - цилиндрические зубчатые передачи с внешним зацеплением; г - реечная передача; д - цилиндрическая передача с внутренним зацеплением; е - зубчатая винтовая передача; ж, з, и - конические зубчатые передачи; к - ги поидная передача

В большинстве случаев зубчатая передача служит для передачи вращательного движения. В некоторых механизмах эту передачу применяют для преобразования вращательного движения в поступательное (или наоборот, см. рис. 1, г).

Зубчатые передачи - наиболее распространенный тип передач в современном машиностроении и приборостроении; их применяют в широких диапазонах скоростей (до 275 м/с), мощностей (до десятков тысяч киловатт).

Основные достоинства зубчатых передач по сравнению с другими передачами:

Технологичность, постоянство передаточного числа;

Высокая нагрузочная способность;

Высокий КПД (до 0,97-0,99 для одной пары колес);

Малые габаритные размеры по сравнению с другими видами передач при равных условиях;

Большая надежность в работе, простота обслуживания;

Сравнительно малые нагрузки на валы и опоры.

К недостаткам зубчатых передач следует отнести:

Невозможность бесступенчатого изменения передаточного числа;

Высокие требования к точности изготовления и монтажа;

Шум при больших скоростях; плохие амортизирующие свойства;

Громоздкость при больших расстояниях между осями ведущего и ведомого валов;

Потребность в специальном оборудовании иинструменте для нарезания зубьев;

Зубчатая передача не предохраняет машину от возможных опасных перегрузок.

Зубчатые передачи и колеса классифицируют по следующим признакам (см. рис. 1):

По взаимному расположению осей колес - с параллельными осями (цилиндрические, см. рис. 1, а-д), с пересекающимися осями (ко­нические, см. рис. 1, ж-и), со скрещивающимися осями (винтовые, см. рис. 1, е, к);

По расположению зубьев относительно образующих колес - прямозубые, косозубые, шевронные и с криволинейным зубом;

По конструктивному оформлению - открытые и закрытые;

По окружной скорости - тихоходные (до 3 м/с), для средних скоростей (3-15 м/с), быстроходные (св. 15 м/с);

По числу ступеней - одно- имногоступенчатые;

По расположению зубьев в передаче и колесах - внешнее, внутрен­нее (см. рис. 1, д) и реечное зацепление (см. рис. 1, г);

По форме профиля зуба - с эвольвентными, круговыми;

По точности зацепления. Стандартом предусмотрено 12 степеней точности. Практически передачи общего машиностроения изготовляют от шестой до десятой степени точности. Передачи, изготовленные по шестой степени точности, используют для наиболее ответственных случаев.

Из перечисленных выше зубчатых передач наибольшее распространение получили цилиндрические прямозубые и косозубые передачи, как наиболее простые в изготовлении и эксплуатации.

Преимущественное распространение получили передачи с зубьями эвольвентного профиля, которые изготавливаются массовым методом обкатки на зубофрезерных или зубодолбежных станках. Достоинство эвольвентного зацепления состоит в том, что оно мало чувствительно к колебанию межцентрового расстояния.

Другие виды зацепления применяются пока ограниченно. Так, циклоидальное зацепление, при котором возможна работа шестерен с очень малым числом зубьев (2-3), не может быть, к сожалению, изготовлено современным высокопроизводительным методом обкатки, поэтому шестерни этого зацепления трудоемки в изготовлении и дороги; новое пространственное зацепление Новикова пока еще не получило массового распространения, вследствие большой чувствительности к колебаниям межцентро­вого расстояния.

Прямозубые колёса (около 70%) применяют при невысоких и средних скоростях, когда динамические нагрузки от неточности изготовления невелики, в планетарных, открытых передачах, а также при необходимости осевого перемещения колёс.

Косозубые колёса (более 30%) имеют большую плавность хода и применяются для ответственных механизмов при средних и высоких скоростях.

Шевронные колёса имеют достоинства косозубых колёс плюс уравновешенные осевые силы и используются в высоконагруженных передачах.

Конические передачи применяют только в тех случаях, когда это необходимо по условиям компновки машины; винтовые - лишь в специальных случаях.

Колёса внутреннего зацепления вращаются в одинаковых направлениях и применяются обычно в планетарных передачах.

Назначение зубчатой передачи передавать движение от одного вала к другому с изменением угловых скоростей и моментов по величине и направлению. Такая передача состоит из двух колес. Передача вращающего момента в зубчатой передаче осуществляется благодаря давлению зубьев, находящихся в зацеплении, одного колеса на зубья другого. Зубчатые передачи широко распространены в России и за рубежом благодаря их достоинствам по сравнению с другими механическими передачами.

Преимущества: большая долговечность и высокая надежность; высокий КПД (до 0,98); постоянство передаточного отношения; возможность применения в широком диапазоне моментов, скоростей и передаточных отношений; малые габаритные размеры; простота эксплуатации.

Недостатки: наличие шума; невозможность плавного изменения передаточного отношения; необходимость высокой точности изготовления и монтажа, что увеличивает их стоимость.

По исходному контуру зубчатые передачи делят:

  • на эвольвентные – преимущественно распространены в промышленности;
  • с круговым профилем (зацепление М. Л. Новикова) – применяются для передач с большими нагрузками.

У эвольвентного зацепления рабочая поверхность зуба имеет эвольвентный профиль. В дальнейшем будем рассматривать лишь передачи с эвольвентным зацеплением.

К зубчатым передачам относятся цилиндрические, конические, планетарные, волновые и др.

Цилиндрические зубчатые передачи

Цилиндрической зубчатой передачей называется передача с параллельными осями. Они бывают с прямым зубом (рис. 4.13, а), косым зубом, (рис. 4.13, б), и шевронные, (рис. 4.13, в) (β – угол наклона зуба). Рекомендуется максимальные передаточные числа в одной ступени не превышать, так как в противном случае габаритные размеры механизмов увеличиваются но сравнению с двухступенчатой передачей с тем же передаточным числом.

Преимущества передач с шевронным и косым зубом по сравнению с прямым: бо́льшая прочность зуба на изгиб (бо́ль-

Рис. 4.13

шая нагрузочная способность); большая плавность зацепления и малый шум, а также меньшие динамические нагрузки.

Недостатки , наличие осевой силы у косозубых передач; большая сложность изготовления.

Косозубые передачи применяют при окружных скоростяхм/с; шевронные передачи – преимущественно в тяжело нагруженных передачах.

Кинематика и геометрия цилиндрические зубчатых колес. Передаточное отношение, где– угловая частота вращения i-го вала.

Для наружного зацепления (см. рис. 4.4, а – вращение колес в разные стороны) i берется со знаком "–", для внутреннего (см. рис. 4.4, б – вращение в одну сторону) со знаком "+". Из кинематического условия – равенства скоростей в месте контакта зубьев колес, , получаем ,

где– частота вращения i-ro колеса;– делительный диаметр зубчатого колеса.

Принимая ( – количество зубьев г-го колеса) и учитывая соотношение (4.3), получаем

(4.4)

где– передаточное число (всегда величина положительная). Принято меньшее из зубчатых колес в паре называть шестерней и обозначать "ш" или "1", а большее – колесом ("к" или "2"),

Различают понижающие передачи (рис. 4.14, а), которые понижают частоту вращения и используются в редукторах;

Рис. 4.14

повышающие передачи (рпс. 4.14, б ), которые повышают частоту вращения и используются в мультипликаторах.

Зубчатые колеса в основном используются с эвольвснт- ным зацеплением, которое обеспечивает постоянное передаточное отношение, малые скорости скольжения в зацеплении и несложное изготовление. Так как в передаче преобладает трение качения, а трение скольжения мало, то она имеет высокий КПД. Это зацепление мало чувствительно к отклонению межосевого расстояния. В эвольвентном зацеплении рабочая поверхность зуба имеет форму эвольвенты. Эвольвентой называют кривую, которую описывает точкаобразующей прямой N–N, перекатывающаяся без скольжения по основной окружности диаметра. Образующая прямая всегда перпендикулярна к эвольвенте, а отрезок является ее радиусом кривизны (рис. 4.15).

Перейдем к рассмотрению геометрии эвольвентных зубчатых колес.

На рис. 4.16 показано косозубое колесо, для которого нормальный шаг определяют по формуле

где– окружной делительный шаг – расстояние между одноименными профилями соседних зубов, измеряемое по дуге делительной окружности зубчатого колеса;– угол наклона зуба.

Рис. 4.15

Рис. 4.16

Окружной модуль– это величина, враз меньшая окружного шага:

Разделив формулу (4.5) на π, получаем

где– нормальный модуль, уточняется по ГОСТу, что обеспечивает возможность использования стандартного инструмента, например модульных фрез.

Модуль является основным параметром зубчатого зацепления.

Длина делительной окружности зубчатого колеса определяется по формуле

Разделив обе части равенства на π, получаем выражение для определения делительного диаметра

что подтверждает соотношение, принятое в формуле (4.4).

Нарезание зубчатых колес производится инструментальной рейкой. Окружность зубчатого колеса, на которой шаг р и угол зацепления соответственно равны шагу и углу профиля а инструментальной рейки, называют делительной (d ). На рейке делительной плоскостью называют плоскость, на которой толщина зубьев равна ширине впадины. Сопряженные пары зубчатых колес касаются друг друга в полюсе зацепления. Окружности, проходящие через полюс зацепления Р и перекатывающиеся одна по другой без скольжения, называются начальными (рис. 4.17, а, где, – диаметры начальных окружностей;– угол зацепления). Отрезок АВ линии зацепления, ограниченный окружностями вершин зубьев шестерни и колеса, называется активным участком линии зацепления Эта линия определяет начало входа пары зубьев в зацепление и выхода из него.

Расстояние между начальной и делительной окружностями называют смещением исходного контура Отношение этого смещения к т называют коэффициентом

Рис. 4.17

смещениях (рис. 4.18). Приделительный и начальный диаметры равны,.Припроисходит подрезание зуба, что устраняется введением положительного смещениях Если призадать смещение,то суммарный коэффициент смещения будет равен

В этом случае зубья колес имеют одинаковую высоту, но высота головки и ножки зуба, диаметры окружностей вер-

Рис. 4.18

шин и впадин различны. Толщина зубьев шестерни увеличивается, а колеса уменьшается. Если условиене вы

полняется, то нужно вводить коэффициент уравнительного смещения .

Основные геометрические характеристики косозубой цилиндрической передачи внешнего зацепления при х = О приведены на рис. 4.17, б:

Делительный диаметр

Участок зацепления зубчатых колес показанна рис. 4.19, где– ширина зубьев шестерни и колеса;– рабочая ширина зуба, на которой происходит их контакт:

где– относительная ширина зуба (большее значение для больших нагрузок);

(4.12)

– межосевое расстояние ("+" – для внешнего зацепления, "-" – для внутреннего).

Рис. 4.19

Геометрические параметры эквивалентного колеса для косозубой передачи. Аналитическое определение напряжений изгиба в опасном сечении косых зубьев затруднено из-за их криволинейной формы и наклонного расположения контактных линий. Поэтому переходят от косозубых колес к эвольвентным с прямым зубом. Напряжения, как и для прямых зубьев, можно определить, рассматривая нормальное сечениекосых зубьев (рис. 4.20).

В нормальном сеченииполучаем эллипс с полуосями а и b:

Используя известное из геометрии выражение, определяем радиус окружности эллипса в точке контакта Р с сопрягаемым колесом:

Делительный диаметр эквивалентного зубчатого колеса

Принимаяполучаем формулу . Подставив в нее , определяем количество зубьев у эквивалентного колеса

Расчеты косозубых колес на прочность производят для эквивалентных цилиндрических прямозубых колес с диаметром делительной окружностии числом зубьев .

Изготовление зубчатых колес. Существует два метода нарезания зубьев: копирование и обкатка.

Метод копирования заключается в прорезании впадин между зубьями модульными фрезами дисковыми (рис. 4.21а) или пальцевыми (рис. 4.21, б). После прорезания каждой

Рис. 4.20

Рис. 4.21

впадины заготовку поворачивают на шаг зацепления. Профиль впадины представляет собой копию профиля режущих кромок фрезы. Для нарезания зубчатых колес с разным числом зубьев необходим разный инструмент. Метод копирования малопроизводительный и менее точный, чем при обкатке.

При шлифовании фрезу заменяют шлифовальным кругом соответствующего профиля.

Метод обкатки основан на воспроизведении зацепления зубчатой пары, одним из элементов которой является режущий инструмент – червячная фреза (рис. 4.22, а ), долбяк (рис. 4.22, б ) или реечная гребенка (рис. 4.22, в ). При нарезании зуборезной гребенкой заготовка вращается вокруг своей оси, а инструментальная рейка 1 совершает возвратно-поступательное движение параллельно оси заготовки 2 и поступательное движение параллельно касательной к ободу заготовки. Гребенками нарезают прямозубые и косозубые колеса с большим модулем зацепления. При нарезании червячной фрезой, имеющей в осевом сечении форму инструментальной рейки, заготовка и фреза вращаются вокруг своих осей, обеспечивая непрерывность процесса. Долбяк имеет форму шестерни с режущей кромкой. Он совершает возвратно-поступательное движение вдоль оси заготовки и вращается вместе с заготовкой. Для нарезания цилиндрических колес

Рис. 4.22

с внешним расположением зубьев используют фрезу и гребенку, для нарезания колес с внутренним и внешним расположением зубьев – долбяки.

Материалы зубчатых колес. Если механическая обработка производится после термической, то твердость зубчатых колес должна быть НВ 350. Такой материал применяется в мелкомодульных передачах и в передачах с модулем т< 2. Для уменьшения размеров зубчатых колес (обычно при т> 2) необходимо упрочнить рабочую поверхность зуба, что увеличивает допускаемые контактные напряжения. Объемная закалка используется для среднеуглеродистых сталей (например, 40Х, 40ХН и др.) до твердости HRCa > 45÷55. Такая закалка делает сердцевину менее пластичной, что способствует поломке зубьев. У современных зубчатых колес сохраняют вязкую сердцевину, а упрочняют лишь рабочую поверхность зуба термическими (поверхностная закалка ТВЧ), химико-термическими методами (цементация и азотирование), методом физического воздействия высоких энергий (лазерная закалка, ионное азотирование) и др. При цементировании сталей 12ХНЗА, 18Х2НМА, 15ХФ твердость поверхности 56–62 HRC3; при азотировании сталей 38Х2Ю, 38Χ2ΜΙΟΛ – 50–55 HRC3; при ионном азотировании – 80–90 HRCэ; при лазерном упрочнении – 56–60 HRCэ; при поверхностном упрочнении рабочей поверхности зуба масса редуктора снижается в 1,5–2 раза и соответственно уменьшаются его габаритные размеры.

Точность зубчатой передачи. В стандарте предусмотрены степени точности зубчатых передач 1–12 (от более точной к наименее точной). Наибольшее распространение имеют следующие точности: 6 – повышенная точность (до v = 20 м/с); 7 – нормальная точность (до v = 12 м/с); 8 – пониженная точность (до v = 6 м/с); 9 – грубая точность (до v = 3 м/с). Значения наибольших допустимых скоростей v приведены для прямозубых передач, а для косозубых их необходимо увеличить примерно в 1,5 раза. Степень точности назначается с учетом условий работы передачи и предъявляемых к ней требованиям.

Степень точности характеризуется следующими основными показателями:

  • нормой кинематической точности колеса, устанавливающей величину полной погрешности угла поворота зубчатых колес за один оборот. Она является важным показателем для высокоточных делительных механизмов;
  • нормой плавности работы колеса, определяющей величину составляющих полной погрешности угла поворота зубчатого колеса, многократно повторяющихся за один оборот передачи. Она связана с неточностью изготовления по шагу π профилю и вызывает дополнительные динамические нагрузки в зацеплении;
  • нормой контакта, характеризующей полноту прилегания боковых поверхностей сопряженных зубьев. Она оценивается следом на рабочей поверхности зуба после контакта с вращающимся колесом, зубья которого смазаны краской (рис. 4.23).

Степень точности должна соответствовать окружной скорости в зацеплении: чем она выше, тем выше должна быть точность передачи. В зависимости от степени точности и размеров на отдельные элементы зацепления и передачи установлены допуски.

Боковой зазор между зубьями(рис. 4.24, где – допуск; – минимальный и максимальный боковые зазоры) должен обеспечивать свободное вращение колес и устранить заклинивание. Он определяется видом сопряжения колес от Л до Н. Наибольший зазор у А, а наименьший у Н. Для передач с модулем т> 1 установлены виды сопряжений А, В, С, D, E, Н. Обычно используется сопряжение В, а у реверсивных передач С. Для мелкомодульных передач < 1) виды сопряжений D, E, F, G, H. Чаще используют Е, а в реверсивных передачах F. Допускается применять раз-

Рис. 4.23

Рис. 4.24

личные степени точности но отдельным показателям, например при т ≥ 1 7-6-7-В (7 – норма кинематической точности, 6 – норма плавности, 7 – норма контакта), а при одинаковой точности по всем показателям (7-7-7-В) записывают 7-В.

Виды разрушений зуба. При работе цилиндрических зубчатых передач возможны различные повреждения зубьев колес: механическое и молекулярно-механическое изнашивание, а также поломка зубьев.

Механическое изнашивание. Оно включает:

  • выкрашивание рабочих поверхностей (рис. 4.25, а). Это наиболее частая причина выхода из стоя зубчатых передач, работающих со смазкой. Разрушения носят усталостный характер. Трещины развиваются до выкрашивания в основном на ножке зубьев в местах неровностей, оставшихся после окончательной обработки. В процессе работы от нагружения зуба число ямок растет и их размеры увеличиваются. Профиль зуба искажается, поверхность становится неровной, возрастают динамические нагрузки. Процесс выкрашивания усиливается, и рабочая поверхность на ножке зуба разрушается. Опасно прогрессивное выкрашивание – трещины от ямок могут распространяться и поражать всю поверхность ножек. Если смазочный материал отсутствует или его количество незначительно, выкрашивание наблюдается редко, так как образовавшиеся повреждения сглаживаются. Сопротивление выкрашиванию увеличивается с увеличением твердости поверхности зубьев, чистоты обработки и правильным подбором смазочного материала;
  • износ, зубьев (рис. 4.25, 6) – изнашивание рабочих поверхностей зубьев, которое возрастает с увеличением контактных напряжений и удельного скольжения. Износ искажает эвольвентный профиль, возрастают динамические

Рис. 4.25

нагрузки. Так как наибольшее скольжение происходит в начальных и конечных точках контакта зубьев, то наибольший износ наблюдается на ножках и головках зубьев. Износ сильно увеличивается из-за неровностей на рабочих поверхностях зуба, после обработки, а так же при загрязнении зубчатой передачи абразивными частицами (абразивный износ). Он наблюдается при работе у открытых механизмов. Если неровности меньше толщины масляной пленки, износ уменьшается, а при недостаточной смазке увеличивается. Его можно понизить уменьшением контактных напряжений σΗ, увеличением износостойкости поверхности зубьев (повысить твердость рабочих поверхностей зубьев, правильно выбрать смазочный материал).

Молекулярно-механическое изнашивание. Такое изнашивание проявляется как заедание (рис. 4.25, в) при действии высоких давлений в зоне, где нет масляной пленки. Сопряженные поверхности зубьев сцепляются друг с другом настолько сильно, что частицы поверхности более мягкого зуба привариваются к поверхности зуба другого колеса. Образовавшиеся наросты на зубьях наносят на рабочие поверхности других зубьев борозды. Заедание особенно интенсивно в вакууме или когда рабочие поверхности зуба подвергаются высокому давлению. Заедание предупреждают повышением твердости и снижением шероховатости поверхностей, правильным подбором противозадирных масел.

Для предотвращения выкрашивания рабочих поверхностей зубьев нужно проводить расчет передачи на контактную прочность.

Поломка зубьев. Это наиболее опасный вид повреждения. Она носит усталостный характер и обычно отсутствует у зубчатых колес редукторов, когда их рабочие поверхности не упрочнены. Излом зубьев является следствием возникающих в них повторно-переменных напряжений от изгиба при перегрузках. Усталостные трещины образуются у основания зуба на той стороне, где от изгиба возникают наибольшие напряжения растяжения. Излом происходит в сечении у основания зуба.

Поломку предупреждают расчетом на прочность по напряжениям изгиба.

Силы в зацеплении цилиндрических передач. Приложенную к зубу косозубого колеса силу F можно разложить на три составляющие F t, F r, F a (рис. 4.26):

где– окружная сила (Г – расчетный вращающий момент на колесе);– радиальная сила; осевая сила;– углы зацепления в торцевом и нормальном сечениях.

У прямозубого колеса отсутствует осевая сила, т.е.

Расчетные силы в зацеплении. При передаче нагрузки в зацеплении возникают, кроме статической, дополнительная динамическая составляющая силы, а также имеет место неравномерность распределения нагрузки по ширине зуба и распределение нагрузки между зубьями. Все изменения в нагрузке по сравнению с исходной учитывают коэффициенты нагрузкии

Удельная, окружная и расчетная силы. В расчетах на контактную выносливость определяется по формуле

(4.17)

В расчетах на выносливость при изгибе

Рис. 4.26

– коэффициент нагрузки при изгибе;– коэффициент распределения нагрузки между зубьями;, – коэффициент, учитывающий неравномерность распределения нагрузки но ширине зуба;– коэффициент, учитывающий дополнительную динамическую нагрузку на зубья при изгибе.

При работе привода динамические внешние нагрузки увеличивают силы и моменты. В расчетах на прочность необходимо использовать расчетную силу Fu расчетный момент Т:

где – коэффициент динамичности внешней нагрузки; – номинальная сила и вращающий момент.

Удельные окружные динамические нагрузки действующие на зубья колес, возникают при взаимодействии зубьев в зацеплении из-за неточности изготовления по шагу и их деформации. Эти силы определяют с учетом погрешности зацепления по шагу, зависящей от степени точности по нормам плавности и модуля передачи.

Удельная окружная динамическая нагрузка для цилиндрических передач при расчете на контактную прочность

(4.21)

где – коэффициент, учитывающий твердость рабочих поверхностей и угол наклона зуба (табл. 4.6); – коэффициент, учитывающий погрешность зацепления по шагу

Таблица 4.6

Таблица 4.7

Модуль 171, мм

Степень точности по нормам плавности ГОСТ 1643–81

(табл. 4.7);– окружная скорость в зацеплении, м/с;– межосевое расстояние, мм; и – передаточное число зубчатой пары;– предельное значение окружной динамической силы, Н/мм (см. табл. 4.7).

В расчетах прочности зубьев на изгиб пдя цилиндрических передач

(4.22)

Величиныте же, что при проверочном расчете на контактную прочность (см. табл. 4.7), а значенияприведены в табл. 4.6.

С увеличением степени точности по нормам плавности передачи дополнительные динамические нагрузки снижаются. То же происходит при переходе от прямых зубьев к косым. При повышении твердости зубьев нагрузки можно увеличивать. Отметим, что динамическая нагрузка с увеличением скорости растет, но до определенного предела.

Коэффициенты внутренней динамической нагрузки на зубья. Для расчетов на контактную и изгибистую прочность эти коэффициенты определяются по формулам

(4.23)

где ;– окружная сила в зацеплении;– рабочая ширина зуба.

Коэффициентыучитывают распределение на

грузки между зубьями в расчетах на контактную и изгибистую прочность. Эти коэффициенты связаны с погрешностью изготовления. Для прямозубых передач; для косозубых передачзависят от точности зацепления и твердости рабочей поверхности зубьев: (табл. 4.8), так как у косозубых передач одновременно в зацеплении находится не менее двух пар зубьев. Без нагрузки у одной из пар появляется зазор, который устраняется при увеличении нагрузки за счет упругих деформаций.

Коэффициентыучитывают неравномерность распределения нагрузки по ширине зубчатых венцов, связанной с деформацией валов, опор и с погрешностью их изготовления. Прогибы валов в местах расположения колес приводят к их перекосу и неравномерному распределению нагрузки по линии контакта. Концентрация нагрузки зависит от рас-

Таблица 4.8

Коэффициенты

Степень точности

К На, Xfa при НВ < 350

К Иа, К Го при НВ > 350

положения опор и твердости материала. Значения коэффициентов практически одинаковы при расчете на контактную и изгибную прочности:

гдедля прямых зубьев,для косых зубьев;– коэффициент относительной твердости контактных поверхностей, учитывающий приработку зубьев:

– коэффициент, учитывающий влияние прогиба вала, на который влияет расположение колес относительно опор: при симметричном расположении, при несимметричном>, при консольном .

Наибольший перекос при нагружении возникает у валов с консольным расположением опор, а наименьший при симметричном.

Контактные напряжения. Характер сопряжения некоторых деталей машин отличается тем, что передаваемая ими по малой поверхности нагрузка в зоне контакта вызывает высокие напряжения. Контактные напряжения характерны для зубчатых колес и подшипников качения. Контакт бывает точечным (шар на плоскости) и линейным (цилиндр на плоскости). При нагружении происходит деформация и зона контакта расширяется до области, ограниченной кругом, прямоугольником или трапецией, в которой возникают контактные напряжения. При больших контактных напряжениях, превышающих допускаемые, на контактной поверхности возможны повреждения поверхностей, которые появляются в виде вмятин, борозд, трещин. Такие повреждения могут возникнуть в зубчатых передачах и у подшипников, контактные напряжения которых изменяются во времени но прерывистому циклу. Переменные напряжения являются причиной усталостного разрушения рабочей поверхности зубьев: выкрашивания, износа, заедания. При больших контактных напряжениях статическое нагружение может вызвать пластическую деформацию и появление на поверхности вмятин.

Решение контактной задачи. Решение контактной задачи было получено Г. Герцем. При ее решении использовались следующие допущения: материалы соприкасающихся тел однородны и изотропны, площадка контакта весьма мала, действующие силы направлены нормально к поверхности контакта, нагрузки создают в зоне контакта только упругие деформации и подчиняются закону Гука. В реальных конструкциях соблюдаются не все сформулированные условия, однако экспериментальные исследования подтвердили возможность использования формулы Герца для инженерных расчетов. Рассмотрим контактные напряженияпри сжатии двух цилиндров (рис. 4.27, а). На цилиндры действует удельная нарузка

где F – нормальная сила; h – ширина цилиндров.

В зоне контакта на участке шириной 4 наибольшее контактное напряжение определяется (при V ≠ v 2) по формуле

(4.26)

где– приведенный радиус кривизны для цилиндров с радиусамии– коэффициенты Пуассона для цилиндров;– модули упругости материалов цилиндров;;– удельная окружная сила (рис. 4.28).

Рис. 4.27

Рис. 4.28

Приведенные модуль упругости и радиус

(4.27)

В формуле длязнак "+" ставится при контакте двух выпуклых поверхностей; знак "-" – для одной вогнутой, а другой выпуклой поверхности (рис. 4.27, б).

Если коэффициенты Пуассона цилиндров равны, то формулу (5.26) можно записать гак:

(4.28)

Формулу (4.28) называют формулой Герца.

Выражения (4.26) или (4.28) используются при выводе формул для контактных напряжений.

Проверочный расчет цилиндрической прямозубой передачи на контактную прочность

Расчетные контактные напряжения Для определения наибольших контактных напряжений в качестве исходной принимают формулу Герца (4.28). Подставив в выражения (4.27) значения,получим

Подставивв формулу Герца, имеем

(4.29)

(знак "+" используется при внешнем зацеплении, а "-" – при внутреннем). Здесь Z, – коэффициент, учитывающий форму сопряженных поверхностей зубьев в полюсе зацепления,

(для прямых зубьев , при , а – углы зацепления в торцевой плоскости у косозубых и прямозубых передач соответственно), значениядля косозубых передач приведены в табл. 4.9; коэффициент, учитывающий механические свойства материалов сопряженных зубчатых колес. Для стальных зубьев МПа1/2.

Таблица 4.9

Коэффициент Z учитывает суммарную длину контактных линий: для прямых зубьев , а для косых, где – коэффициент торцевого перекрытия. Он равен отношению активного участка АВ линии зацепления к окружному шагу (см. рис. 4.17, я). Он определяется количеством зубьев колес, находящихся одновременно в контакте (прив зацеплении находится одна пара, а при то одна, то две). Коэффициентεα влияет на плавность работы передачи. Для прямозубых передач он должен быть больше единицы (), иначе работа передачи может нарушиться (движение не будет передаваться). Коэффициентможно приближенно определить по формуле

(4.30)

где– число зубьев колес.

Здесь знак "+" используется для внешнего зацепления, а "-" – для внутреннего.

Для расчета косозубых передач можно принять среднее значениеI.

Предельные контактные напряжения. Кривая выносливости для предельных контактных напряжений в логарифмических координатах приведена на рис. 4.29, где – пре-

Рис. 4.29

дельные контактные напряжения за расчетную долговечность для числа циклов переменных нагружений. Кривая выносливости в пределах

(участок Л/)), где – предел контактной выносливости при базовом числе циклов нагружений , а назначается из условия отсутствия пластического течения материала или хрупкого разрушения на рабочей поверхности зуба при, описывается формулой:

(4.32)

Отметим, что , а , что связано с отнулевым циклом нагружения па поверхности зуба и с локальным действием нагрузки. Значения предельных напряжений выбирают по табл. 4.10.

Таблица 4.10

Твердость материала шестерни делают больше, чем у колеса, на 10–50 НВ. Базовое число циклов изменений напряжений для стальных колес определяется по формуле

Число циклов изменения контактных напряжений на поверхности зуба, где– время работы цикла; с – число контактов одной поверхности зуба за один оборот; п – частота вращения, об/мии;– число циклов нагружения.

При работе зуба двумя сторонами профиля у реверсивных передач в расчет принимают времяработы во время цикла одной из сторон, где нагрузка больше, так как контактные напряжения действуют лишь вблизи поверхности зуба и нагрузка одной рабочей поверхности не влияет на другую (рис. 4.30, а , где– время нагружения одной стороной зуба за один цикл;– время цикла нагружения), а при вращении в одну сторону– полное время нагружения (рис. 4.30, б). Если задан ресурс, то

При наличии реверса, а при одностороннем вращении

После определения значенийих подставляют в неравенство (4.31). Если значение функции, то следует принять, если, то. Выбираем из двух значений для шестерни σ//Пт i и колесаминимальное .

Допускаемые контактные напряжения определяют по формуле

где– запас прочности при расчете зуба на

контактную прочность. Для механизмов с высокой надежностью следует принимать бо́льшие значения

Рис. 4.30

Условие контактной прочности:

Если условие прочности не выполняется и , то при малом отклонении (менее 10%) нагрузки на зуб можно снизить, увеличивая ширину колес: , где – первичное и уточненное значения ширины зубчатого венца. При большем отклонении нужно увеличить модуль и повторить расчеты.

Проектировочный расчет цилиндрической зубчатой передачи по контактным напряжениям

Из формул для проверочного расчета по контактным напряжениям (4.29), (4.34), выразив удельную окружную силу через вращающий момент, получаем выражение для приближенного значения межосевого расстояния:

(4.35)

где – расчетный вращающий момент на шестерне, Н ∙ мм. В формуле знак "+" – для внешнего зацепления, знак "-" – для внутреннего.

Если оба колеса стальные, МПа, тогда

(4.36)

При проведении проектировочного расчета неизвестна скорость, и поэтому в первом приближении задают . Вдальнейшем при проведении проверочного расчета если будет отличаться более чем на 20%, то необходимо повторно определитьс уточненным значением , входящим в

После определения межосевого расстояния определяют приближенно модуль зацепления зубьев по формуле

и уточняют его до значения т по ГОСТ 9563–80 (табл. 4.11). Затем определяют все геометрические характеристики зубчатых венцов для шестерни и колеса по формулам (4.9)-(4.12).

Таблица 4.11

Модули зубьев, мм

Модули зубьев, мм

Модули зубьев, мм

Обычно ширину зубчатого венца у цилиндрической шестерни делают несколько больше, чем у колеса (для увеличения изгибной прочности зубьев).

Возможен и другой вариант расчета, когда вместо межосевого расстояния из формулы (4.36) определяют делительный диаметр шестерни

Определив|, находят модуль, уточняют его до значения т но ГОСТ 9563–80 и определяют все геометрические параметры зубчатых колес.

Проверочный расчет на прочность при изгибе

Расчетные изгибные напряжения. Рассмотрим цилиндрическую передачу с прямым зубом. Расчет проводим для предупреждения поломки зубьев. Максимальные напряжения возникают в заделке (у основания зуба), когда сила находится у окружности вершин и передается одной парой зубьев. Зуб будем рассматривать как консольную балку. Самая опасная точка – А, так как усталостные трещины и разрушения начинаются с растянутой сторон ы зубьев. На зуб действует в вершине сила F, которую разложим на две составляющие (рис. 4.31):

В расчетах используем не поминальные, а расчетные силы, которые определяют, вводя коэффициент ■; соответственно получаем нормальные напряжения изгиба в основании зуба от изгибающего момента и напряжения сжатия от силы :

где – момент сопротивления при изгибе; – площадь сечения у основания зуба.

В опасной точкенапряжения от изгиба будут равны

где – теоретический коэффициент концентрации напряжений у основания зуба.

После заменынаи введения для косозубых передач коэффициентовиформула дляпримет вид

где – удельная окружная сила; – коэффициент, учитывающий перекрытие зубьев; – коэффициент,учитывающий наклон зуба (получен экспериментально); – коэффициент формы зуба:

Для внешнего зацепления;

Для внутреннего зацепления. (4.39)

При расчете косозубых передач по формуле (4.38) коэффициенты . У прямозубых передач

Рис. 4.31

Допускаемые напряжения изгиба зубьев. Вначале определим предел ограниченной выносливости зубьев на изгиб для отнулевого цикла. Предельные напряжения изгиба при одностороннем приложении нагрузки (цикл с коэффициентом асимметрии) для стальных зубчатых колес определяют из неравенства

где– максимальные предельные напряжения изгиба, не вызывающие остаточных деформаций или хрупкого разрушения. Такие напряжения соответствуют числу циклов нагружений:

( приипри); – предел выносливости изгибных напряжений зуба при базовом числе циклов нагруженийи, он зависит от твер

дости материала и вида термообработки (табл. 4.12).

Для зубчатых колес из стали

(4.41)

где– коэффициент долговечности; /" = 9 для колес цемен

тированных и азотированных с нешлифованной переходной поверхностью у основания зуба; в других случаях т = 6;

Таблица 4.12

– число циклов нагружений при изгибе. При заданном число циклов (см. рис.4.30, а) или (см. рис. 4.30, б); при заданном ресурсечисло циклов

Допускаемое напряжение в опасном сечении АВ определяется по формуле

где– коэффициент, учитывающий влияние шероховатости поверхности у корня зуба (при нешлифованных зубьях;при шлифованных зубьях);– коэффициент, учитывающий влияние двухстороннего приложения нагрузки (при одностороннем вращениии при реверсе для цементированных и азотированных сталей 0,75; в других случаях);– коэффициент запаса прочности при изгибе ().

Для получения вероятности безотказной работы передачинужно принимать

Проверочное условие прочности на изгиб

Проверка проводится отдельно для шестерни 1 и колеса 2.

Порядок расчета цилиндрической зубчатой передачи

Исходные данные. Кинематическая схема, передаточное числои число зубьев; номинальный вращающий момент на ведущем валу; коэффициент динамичности ; частота вращения ведущего вала; график нагружения (циклограмма); гарантийная наработка(ресурс) в часах или в числе циклов нагружения; условия эксплуатации (интервал температур, наличие вибраций, внешние нагрузки и т.д.).

Проектировочный расчет. Расчет выполняют в следующей последовательности:

Проверочный расчет. При проведении расчета:

Конструкция цилиндрических зубчатых колес. Зубчатые колеса изготавливают из круглого проката (прутка) и заготовок, получаемых ковкой, штамповкой и литьем. Шестерня изготовляется заодно с валом (вал – шестерня), если ее диаметр близок к диаметру вала. Зубья нарезают на выступающем венце (рис. 4.32). При диаметре венца, большем или равном диаметру вала, зубья углубляются в тело вала частично или полностью. Цилиндрические зубчатые колеса, насаживаемые на вал, можно выполнять со ступицей и в виде сплошного диска, где заготовка выполнена штамповкой или точением (рис. 4.33). Для соединения колес с валом используется шпоночное или шлицевое (зубчатое) соединение. При большом диаметре колесав диске делают 4–6 отверстий диаметром, что снижает его массу. Кроме размеров зубчатого венца, определяемых расчетным путем, можно использовать следующие рекомендации по выбору размеров других элементов цилиндрического зубчато-

Рис. 4.32

Рис. 4.33

го колеса (см. рис. 4.33):

Конструкции цилиндрических зубчатых редукторов см. на рис. 4.8 и 4.9.

Зубчатые передачи. Общие сведения

Зубчатой передачей называется трехзвенный механизм, в котором два подвижных зубчатых звена образуют с неподвижным звеном вращательную или поступательную пару. Зубчатое звено передачи может представлять собой колесо, сектор или рейку. Зубчатые передачи служат для преобразования вращательных движений или вращательного движения в поступательное.

Все применяемые здесь и в дальнейшем термины, определения и обозначения, относящиеся к зубчатым передачам, соответствуют ГОСТ 16530-83 «Передачи зубчатые», ГОСТ 16531-83 «Передачи зубчатые цилиндрические» и ГОСТ 19325-73 «Передачи зубчатые конические».

Зубчатое зацепление представляет собой высшую кинематическую пару, так как зубья теоретически соприкасаются между собой по линиям или точкам, причем меньшее зубчатое колесо пары называется шестерней, а большее-колесом. Сектор цилиндрического зубчатого колеса бесконечно большого диаметра называется зубчатой рейкой.

Зубчатые передачи можно классифицировать по многим признакам, а именно: по расположению осей валов (с параллельными, пересекающимися, скрещивающимися осями и соосные); по условиям работы (закрытые - работающие в масляной ванне и открытые-работающие всухую или смазываемые периодически); по числу ступеней (одноступенчатые, многосту­пенчатые); по взаимному расположению колес (с внешним и внутренним зацеплением); по изменению частоты вращения валов (понижающие, повышающие); по форме поверхности, на которой нарезаны зубья (цилиндрические, конические); по окружной скорости колес (тихоходные при скорости до 3 м/с, среднескоростные при скорости до 15 м/с, быстроходные при скорости выше 15 м/с); по расположению зубьев относительно образующей колеса (прямозубые, косозубые, шевронные, с криволинейными зубьями); по форме профиля зуба (эвольвентные, круговые, циклоидальные).

Кроме перечисленных существуют передачи с гибкими зубчатыми колесами, называемые волновыми.

Основные виды зубчатых передач (рис.) с параллельными осями: а - цилиндрическая прямозубая, б- ци­линдрическая косозубая, в- шевронная, г - с внутренним зацеплением; с пересекающимися осями: д- коническая прямозубая, е - коническая с тангенциальными зубьями, ж - коническая с криволинейными зубьями; со скрещивающимися осями: з- гипоидная, и- винтовая; к - зубчато-реечная прямозубая (гипоидная и винтовая передачи относятся к категории гиперболоидных передач).

Зубчатая передача, оси которой расположены под углом 90°, называется ортогональной.

Достоинство зубчатых передач заключается прежде всего в том, что при одинаковых характеристиках они значительно более компактны, по сравнению с другими видами передач. Кроме того, зубчатые передачи имеют более высокий к. п. д.(до 0,99 в одной ступени), сохраняют постоянство передаточного числа, создают относительно небольшую нагрузку на опоры валов, имеют большую долговечность и надежность работы в широких диапазонах мощностей (до десятков тысяч киловатт), окружных скоростей (до 150 м/с) и передаточных чисел (до нескольких сотен).

Недостатки зубчатых передач: сложность изготовления точных передач, возможность возникновения шума и вибраций при недостаточной точности изготовления и сборки, невозможность бесступенчатого регулирования частоты вращения ведомого вала.

Зубчатые передачи являются наиболее распространенными типами механических передач и находят широкое применение во всех отраслях машиностроения, в частности в металлорежущих станках, автомобилях, тракторах, сельхозмашинах и т. д.; в приборостроении, часовой промышленности и др. Годовое производство зубчатых колес в нашей стране исчисляется сотнями миллионов штук, а габаритные размеры их от долей миллиметра до десяти и более метров. Такое широкое распространение зубчатых передач делает необходи­мой большую научно-исследовательскую работу по вопросам конструирования и технологии изготовления зубчатых колес и всестороннюю стандартизацию в этой области. В настоящее время стандартизованы термины, определения, обозначения, элементы зубчатых колес и зацеплений, основные параметры передач, расчет геометрии, расчет цилиндрических эвольвентных передач на прочность, инструмент для нарезания зубьев и многое другое.

Основная кинематическая характеристика всякой зубчатой передачи - передаточное число, определяемое по стандарту как отношение числа зубьев колеса к числу зубьев шестерни и обозначаемое и, следовательно,

Определение передаточного отношения остается таким же, как для других механических передач, т. е.

Потери энергии в зубчатых передачах зависят от типа передачи, точности ее изготовления, смазки и складываются из потерь на трение в зацеплении, в опорах валов и (для закрытых передач) потерь на перемешивание и разбрызгивание масла. Потерянная механическая энергия переходит в тепловую, что в некоторых случаях делает необходимым тепловой расчет передачи.

Потери в зацеплении характеризуются коэффициентом , потери в одной паре подшипников - коэффициентом и потери на перемешивание и разбрызгивание масла - коэффициентом . Общий к. п. д. одноступенчатой закрытой передачи

Ориентировочно = 0,96...0,98 (закрытые передачи), = 0,95...0,96 (открытые передачи), = 0,99...0,995 (подшипники качения), = 0,96...0,98 (подшипники скольжения), = 0,98...0,99.

Поверхности взаимодействующих зубьев колес, обеспечивающие заданное передаточное отношение, называются сопряженными. Процесс передачи движения в кинематической паре, образованной зубчатыми колесами, называется зубчатым зацеплением.

Цилиндрическая прямозубая передача

На рис. изображено цилиндрическое колесо с прямыми зубьями. Часть зубчатого колеса, содержащая все зубья, называется венцом; часть колеса, насаживаемая на вал, называется ступицей. Делительная окружность диаметром d делит зуб на две части - головку зуба высотой h a и ножку зуба высотой h f , высота зуба h = h а + h f . Расстояние между одноименными профилями соседних зубьев, измеренное по дуге делительной окружности, называется окружным делительным шагом зубьев и обозначается р. Шаг зубьев слагается из окружной толщины зуба s и ширины впадины е. Длина хорды, соответствующая окружной толщине зуба, называется толщиной по хорде и обозначается . Линейная величина, в раз меньшая окружного шага, называется окружным делительным модулем зубьев, обозначается т и измеряется в миллиметрах (впредь слова «окружной делительный» в терминах будем опускать)

Модуль зубьев - основной параметр зубчатого колеса. Для пары колес, находящихся в зацеплении, модуль должен быть одинаковым. Модули зубьев для цилиндрических и конических передач регламентированы ГОСТ 9563-60*. Значения стандартных модулей от 1 до 14 мм приведены в табл.

Модули, мм

1-й ряд 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12

2-й ряд 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7; 9; 11; 14

Примечание . При назначении модулей 1-й ряд следует предпочитать 2-му.

Все основные параметры зубчатых колес выражают через модули, а именно: шаг зубьев

диаметр делительной окружности

Последняя формула позволяет определить модуль как число миллиметров диаметра делительной окружности, приходящихся на один зуб колеса.

В соответствии со стандартным исходным контуром для цилиндрических зубчатых колес высота головки зуба h a = т, высота ножки зуба h f = 1,25т. Высота зубьев цилинд­рических колес

h = h а + h f = 2,25m .

Диаметр вершин зубьев

d a = m (z + 2),

диаметр впадин

d f = m (z – 2,5).

Расстояние между торцами зубьев колеса называется шириной венца. Контакт пары зубьев цилиндрической прямозубой передачи теоретически происходит по линии, параллельной оси; длина линии контакта равна ширине венца. В процессе работы передачи пара зубьев входит в зацепление сразу по всей длине линии контакта (что сопровождается ударом зубьев), после чего эта линия перемещается по высоте зуба, оставаясь параллельной оси.

Межосевое расстояние цилиндрической передачи с внешним и внутренним зацеплением

называется делительным межосевым расстоянием (знак минус для внутреннего зацепления). Если межосевое расстояние отличается от делительного, то оно обозначается а w .

ГОСТ 1643-81 на допуски для цилиндрических зубчатых колес и передач установлены двенадцать степеней точности, обозначенных цифрами (первая степень - наивысшая). Для каждой степени точности установлены нормы: кинематической точности, плавности работы и контакта зубьев колес и передач.

В процессе изготовления зубчатых передач неизбежны погрешности в шаге, толщине и профиле зубьев, неизбежно радиальное биение венца, колебание межосевого расстояния при беззазорном зацеплении контролируемого и измерительного колес и т. д. Все это создает кинематическую погрешность в углах поворота ведомого колеса, выражаемую линейной величиной, измеряемой по дуге делительной окружности. Кинематическая погрешность определяется как разность между действительным и расчетным углом поворота ведомого колеса. Нормы кинематической точности регламентируют допуски на кинематическую погрешность и ее составляющие за полный оборот колеса. Нормы плавности устанавливают допуски на циклическую (многократно повторя­ющуюся за один оборот) кинематическую погрешность колеса и ее составляющие. Нормы контакта устанавливают размеры суммарного пятна контакта зубьев передачи (в процентах от размеров зубьев) и допуски на параметры, влияющие на этот контакт.

В машиностроении зубчатые передачи общего назначения изготовляют по 6-9-й степеням точности. Цилиндрические прямозубые колеса 6-й степени точности применяют при окружных скоростях колес до 15 м/с; 1-й степени-до 10 м/с; 8-й степени - до 6 м/с; 9-й - до 2 м/с.

Рассмотрим силы, действующие в зацеплении прямозубой цилиндрической передачи. При изображенном на этом рисунке контакте пары зубьев в полюсе П скольжение (следовательно, и трение) отсутствует, зацепление будет однопарным и силовое взаимодействие колес будет заключаться в передаче по линии давления (нормали NN ) силы нормального давления . Разложим эту силу на две взаимно перпендикулярные составляющие и , называемые соответственно окружным и ра­диальным усилиями, тогда

, ,

где - угол зацепления.

Если известен передаваемый вращающий момент Т и диаметр d делительной окружности, то

(так как = 20°, то ).

Сила , вызывает вращение ведомого колеса и изгибает вал колеса в горизонтальной плоскости, сила г изгибает вал в вертикальной плоскости.

Цилиндрические передачи с косыми и шевронными зубьями

Косозубыми называют колеса, у которых теоретическая делительная линия зуба является частью винтовой линии постоянного шага (теоретической делительной линией называется линия пересечения боковой поверхности зуба с делительной цилиндрической поверхностью). Линия зуба косозубых колес мо­жет иметь правое и левое направ­ление винтовой линии. Угол наклона линии зуба обозначается .

Косозубая передача с параллельными осями имеет противоположное направление зубьев ведущего и ведомого колес и относится к категории цилиндрических зубчатых передач, так как начальные поверхности таких зубчатых колес представляют собой боковую поверхность цилиндров. Передача с косозубыми колесами, оси которых скрещиваются, имеет одинаковое направление зубьев обоих колес и называется винтовой зубчатой передачей, которая относится к категории гиперболоидных зубчатых передач, так как начальные поверхности таких зубчатых колес являются частями однополостного гиперболоида вращения; делительные поверхности этих колес - цилиндрические.

У косозубых передач контактные линии расположены наклонно по отношению к линии зуба, поэтому в отличие от прямых косые зубья входят в зацепление не сразу по всей длине, а постепенно, что обеспечивает плавность зацепления и значительное снижение динамических нагрузок и шума при работе передачи. Поэтому косозубые передачи по сравнению с прямозубыми допускают значительно большие предельные окружные скорости колес. Так, например, косозубые колеса 6-й степени точности применяют при окружной скорости до 30 м/с; 7-й степени-до 15 м/с; 8-й степени - до 10 м/с; 9-й - до 4 м/с.

Силу нормального давления в зацеплении косозубых колес можно разложить на три взаимно перпендикулярные составляющие (рис. 7.10,б): окружную силу , радиальную силу и осевую силу , равные:

где Т- передаваемый вращающий момент; - угол зацепления.

Наличие осевой силы - существенный недостаток косозубых передач. Во избежание больших осевых сил в косозубой передаче угол наклона линии зуба ограничивают значениями =8...20°, несмотря на то, что с увеличением увеличивается прочность зубьев, плавность работы передачи, ее нагрузочная способность.

В современных передачах косозубые колеса имеют преимущественное распространение.

Цилиндрическое зубчатое колесо, венец которого по ширине состоит из участков с правыми и левыми зубьями, называется шевронным. Часть венца с зубьями одинакового направления называется полушевроном. Из технологических соображений шевронные колеса изготовляют двух типов: с дорожкой посредине колеса (а) и без дорожки (б). В шевронном колесе осевые силы на полушевронах, направленные в противоположные стороны, взаимно уравновешиваются внутри колеса и на валы и опоры валов не передаются. Поэтому у шевронных колес угол наклона зубьев принимают в пределах = 25...40°, в результате чего повышается прочность зубьев, плавность работы передачи и ее нагрузочная способность. Поэтому шевронные колеса применяют в мощных быстроходных закрытых передачах. Недостатком шевронных колес является высокая трудоемкость и себестоимость изготовления.

Геометрические, кинематические и прочностные расчеты шевронной и косозубой передач аналогичны.

Материалы цилиндрических колес

Материалы для изготовления зубчатых колес в машиностроении- стали, чугуны и пластмассы; в приборостроении зубчатые колеса изготовляют также из латуни, алюминиевых сплавов и др. Выбор материала определяется назначением передачи, условиями ее работы, габаритами колес и даже типом производства (единичное, серийное или массовое) и технологическими соображениями.

Общая современная тенденция в машиностроении - стремление к снижению материалоемкости конструкций, увеличению мощности, быстроходности и долговечности машины. Эти требования приводят к необходимости уменьшения массы, габаритов и повышения нагрузочной способности силовых зубчатых передач. Поэтому основные материалы для изготовления зубчатых колес - термообработанные углеродистые и легированные стали, обеспечивающие высокую объемную прочность зубьев, а также высокую твердость и износостойкость их активных поверхностей.

Критерии работоспособности зубчатых колес и

Под действием сил нормального давления и трения зуб колеса испытывает сложное напряженное состояние, но решающее влияние на его работоспособность оказывают два фактора: контактные напряжения и напряжения изгиба , которые действуют на зуб только во время нахождения его в зацеплении и являются, таким образом, повторно-переменными.

Повторно-переменные напряжения изгиба вызывают появление усталостных трещин у растянутых волокон основания зуба (место концентрации напряжений), которые с течением времени приводят к его поломке (рис. а, б).

Повторно-переменные контактные напряжения и силы трения приводят к усталостному изнашиванию активных поверхностей зубьев. Так как сопротивление усталостному изнашиванию у опережающих поверхностей выше, чем у отстающих, то нагрузочная способность головок зубьев выше, чем ножек. Этим объясняется отслаивание и выкрашивание частиц материала на активной поверхности ножек зубьев (рис. в ) при отсутствии видимых усталостных повреждений головок. Усталостное изнашивание активных поверхностей зубьев характерно для работы закрытых передач.

В открытых передачах и в передачах с плохой (загрязняемой) смазкой усталостное изнашивание опережается абразивным износом активных поверхностей зубьев (рис. г).

В тяжелонагруженных и высокоскоростных передачах в зоне контакта зубьев возникает высокая температура, способствующая разрыву масляной пленки и образованию металлического контакта, в результате чего происходит заедание зубьев (рис. д), о резьбовых соединениях Резьбовым называют соединение... шаг резьбы, как и шаг зубьев зубчатых колес, будем обозначать строчной буквой... , упорная, прямоугольная) служат для передачи движения и применяются в передачах винт - гайка, которые будут...

  • Зубчатые передачи (3)

    Реферат >>

    ... зубчатых передачах 1.1 Общие сведения В зубчатой передаче движение передается с помощью зацеп ления пары зубчатых колес (рис. 1, а - в). Меньшее зубчатое ... масел. 2 ЦИЛИНДРИЧЕСКИЕ КОСОЗУБЫЕ ПЕРЕДАЧИ 1.1 Общие сведения Цилиндрические колеса, у которых...

  • Детали машин. Конспект лекций. Основные требования к конструкции деталей машин

    Конспект >> Промышленность, производство

    Натягом (прессовые соединения) Общие сведения Соединение двух деталей... . Поэтому ниже излагаются краткие сведения о контактных напряжениях и... потери, свойственные как зубчатой передаче , так и передаче винт-гайка. Общий К. П. Д. червячной передачи η , (5.25) ...

  • Валы и оси. Общие сведения

    Научная статья >> Промышленность, производство

    И оси. Общие сведения Вал - деталь машин, предназначенная для передачи крутящего момента вдоль... вращающиеся вместе с ними детали (зубчатые колеса, шкивы, звездочки и др... валов может нарушить нормальную работу зубчатых колес и подшипников, следовательно, ...

  • Зубчатой передачей называется трехзвенный механизм, в котором два подвижных звена являются зубчатыми колесами, или колесо и рейка с зубьями, образующими с неподвижным звеном (корпусом) вращательную или поступательную пару.

    Зубчатая передача служит для передачи вращательного движения с одного вала на другой и изменения частоты вращения посредством зубчатых колес и реек.

    Зубчатое колесо, сидящее на передающем вращение валу, называется веду­щим , а на получающем вращение - ведомым .

    Меньшее из двух колес со­пряженной пары называют шестерней ; большее - колесом ;

    термин «зубчатое колесо » является общим. Параметрам шестерни приписывают индекс 1, а параметрам колеса – 2.

    Основными преимуществами зубчатых передач являются:

    Постоянство передаточного числа (отсутствие проскальзывания);

    Компактность по сравнению с фрикционными и ременными передачами;

    Высокий КПД (до 0,97…0,98 в одной ступени);

    Большая долговечность и надежность в работе (например, для редукторов общего применения установлен ресурс ~ 30 000 ч);

    Возможность применения в широком диапазоне скоростей (до 150 м/с), мощностей (до десятков тысяч кВт).

    Недостатки:

    Шум при высоких скоростях;

    Невозможность бесступенчатого изменения передаточного числа;

    Необходимость высокой точности изготовления и монтажа;

    Незащищенность от перегрузок;

    Наличие вибраций, которые возникают в результате неточного изготовления и неточной сборки передач.

    5.4. Классификация зубчатых передач

    По расположению осей валов различают передачи с параллельными (рис. 2.1, а – в, з), с пересекающимися (рис. 2.1, г, д) и перекрещивающимися (рис. 2.1, е, ж) геометрическими осями.

    По форме могут быть цилиндрические (рис. 2.1, а – в, з), конические (рис. 2.1, г, д, ж), эллиптические, фигурные зубчатые колеса и колеса с неполным числом зубьев (секторные).

    По форме профилей зубьев различают эвольвентные и круговые передачи, а по форме и расположению зубьев – прямые (рис. 2.1, а, г, е, з), косые (рис. 2.1, б), шевронные (рис. 2.1, в) и круговые (рис. 2.1, д, ж).

    В зависимости от относительного расположения зубчатых колес передачи могут быть с внешним (рис. 2.1, а) или внутренним (рис. 2.1, з) их зацеплением. Для преобразования вращательного движения в возвратно поступательное и наоборот служит реечная передача (рис. 2.1, е).

    Зубчатые передачи эвольвентного профиля широко распространены во всех отраслях машиностроения и приборостроения. Они применяются в исключительно широком диапазоне условий работы. Мощности, передаваемые зубчатыми передачами, изменяются от ничтожно малых (приборы, часовые механизмы) до многих тысяч кВт (редукторы авиационных двигателей). Наибольшее распространение имеют передачи с цилиндрическими колесами, как наиболее простые в изготовлении и эксплуатации, надежные и малогабаритные. Конические, винтовые и червячные передачи применяют лишь в тех случаях, когда это необходимо по условиям компоновки машины.

    Эвольвента окружности и ее свойства.

    Эволютой называется геометрическое место центров кривизны данной кривой. Данная кривая по отношению к эволюте называется эвольвентой. Согласно определению нормаль к эвольвенте (на которой лежит центр кривизны) является касательной к эволюте. Эвольвенты окружности описываются точками производящей прямой при ее перекатывании по окружности, которую называют основной.

    Свойства эвольвенты окружности:

    Форма эвольвенты окружности определяется только радиусом основной окружности r b . При эвольвента переходит в прямую линию.

    Производящая прямая является нормалью к эвольвенте в рассматриваемой произвольной точке M y . Отрезок нормали в произвольной точке эвольвенты l MyN = равен радиусу ее кривизны и является касательной к основной окружности.

    Эвольвента имеет две ветви и точку возврата М 0 , лежащую на основной окружности. Эвольвента не имеет точек внутри основной окружности.

    Точки связанные с производящей прямой но не лежащие на ней при перекатывании описывают: точки расположенные выше производящей прямой W - укороченные эвольвенты, точки, расположенные ниже производящей прямой L - удлиненные эвольвенты.

    Если производящая прямая задана параметрическими уравнениями х = x (t ), y = y (t ), то параметрические уравнения её эволюты будут следующие:

    Эвольвентное зацепление и его свойства.

    В зубчатой передаче контактирующие элементы двух профилей выполняются по эвольвентам окружности и образуют, так называемое эвольвентное зацепление. Это зацепление обладает рядом полезных свойств, которые и определяют широкое распространение эвольвентных зубчатых передач в современном машиностроении. Рассмотрим эти свойства.

    Свойство 1. Передаточное отношение эвольвентного зацепления определяется только отношением радиусов основных окружностей и является величиной постоянной.

    Свойство 2. При изменении межосевого расстояния в эвольвентном зацеплении его передаточное отношение не изменяется.

    Свойство 3. При изменении межосевого расстояния в эаольвентном зацеплении величина произведения межосевого расстояния на косинус угла зацепления не изменяется.

    Свойство 4. За пределами отрезка линии зацепления N 1 N 2 рассматриваемые ветви эвольвент не имеют общей нормали, т. е. профили выполненные по этим кривым будут не касаться, а пересекаться. Это явление называется интерференцией эвольвент или заклиниванием.

    Классификация зубчатых передач приведена на рис 2.2.

    Классификация по взаимному расположению осей колес: с па­раллельными осями (цилиндрическая передача - рис. 172, I-IV); с пере­секающимися осями (коническая передача - рис. 172, V, VI); со скрещива­ющимися осями (винтовая передача - рис. 172, VII; червячная передача - рис. 172, VIII).

    Рис 2. Классификация зубчатых передач

    В зависимости от относительного вращения колес и расположения зубьев различают передачи с внеш­ним и внутренним зацеплением. В первом случае (рис. 2, I-III) враще­ние колес происходит в противоположных направлениях, во втором (рис. 2, IV) - в одном направлении. Реечная передача (рис. 2, IX) служит для преобразования вращательного движения в поступательное.

    По форме профиля различают зубья эвольвентные (рис. 2, I, II) и неэвольвентные, например цилиндрическая передача Новикова, зу­бья колес которой очерчены дугами окружности.

    В зависимости от расположения теоретичес­кой линии зуба различают колеса с прямыми зубьями (рис. 2, I), косыми (рис. 2, II), шевронными (рис.2, III) и винтовыми (рис. 2, IV). В непрямозубых передачах возрастает плавность работы, уменьшается износ и шум. Благодаря этому непрямозубые передачи большей частью применяют в установках, требующих высоких окружных скоростей и пере­дачи больших мощностей.

    По конструктивному оформлению различают закры­тые передачи, размещенные в специальном непроницаемом корпусе и обес­печенные постоянной смазкой из масляной ванны, и открытые, работаю­щие без смазки или периодически смазываемые консистентными смазками (рис. 174).

    По величине окруж­ной скорости различают: тихо­ходные передачи (v равной до 3 м/с), среднескоростные (v равной от 3... 15 м/с) и быстроходные (v более 15 м/с)

    Лабораторная работа №1

    АНАЛИЗ КОНСТРУКЦИИ ЗУБЧАТЫХ КОЛЕС И ОПРЕДЕЛЕНИЕ ИХ ПАРАМЕТРОВ


    1. Назначение и классификация зубчатых колес
    Механическая передача , состоящая из зубчатых колес и служащая для передачи вращательного движения, называется зубчатой . По способу передачи движения она относится к передачам зацеплением. (Нужно иметь в виду, что кроме передач зацеплением существуют передачи трением).

    Назначение зубчатого колеса : передача вращательного движения и крутящего момента от сопряженного колеса на вал или с вала на сопряженное колесо с обеспечением заданных нагрузочных и скоростных параметров в течение заданного срока эксплуатации.

    Зубчатые колеса используют так же в реечных передачах , которые предназначены для преобразования вращательного движения в поступательное или наоборот.

    ^ Зубчатые колеса классифицируют :

    - по типу передачи – цилиндрические и конические;


    - по типу зубьев – прямозубые, косозубые, шевронные и с криволинейными зубьями. (Рис 1, 2);

    Рис 1. Примеры цилиндрических зубчатых передач с внешним и внутренним зацеплением
    - по расположению зубьев – с внешним и внутренним зацеплением (Рис 1);

    - по конструктивному исполнению – колеса, изготовленные совместно с валом и называемые вал-шестерня (Рис.3.) и автономные (Рис.4.) В последнем случае вал и зубчатое колесо изготавливают отдельно, затем монтируют совместно в одну сборочную единицу за счет специальных соединений (чаще всего шпоночных или шлицевых ) таким образом, чтобы колесо не имело возможности поворота вокруг вала. В таком состоянии при эксплуатации передачи колесо и вал могут взаимно передавать крутящие моменты.

    Косозубые колеса классифицируют по направлению зубьев – с правым и левым направлением. Для определения направления нужно посмотреть вдоль зуба в верхней части косозубого колеса . Если по направлению взгляда зуб отклоняется вправо, то соответственно направление зуба правое и наоборот.


    Рис.2. Конические зубчатые передачи с прямыми (а.) и криволинейными (б.) зубьями;

    в - реечная передача с прямыми зубьями


    Рис. 3. Зубчатое колесо, изготовленное совместно с валом
    2. Конструктивные исполнения цилиндрических зубчатых колес

    Основными конструктивными элементами зубчатого колеса являются:

    - обод, на котором нарезаны или накатаны зубья;

    - ступица , закрепляемая на валу,

    - диск , соединяющий обод со ступицей. В диске могут выполняться отверстия для уменьшения массы и момента инерции колес (Рис. 4 в, г).

    В частных случаях:

    Обод, диск и ступица объединены в одну конструкцию (Рис. 4 а).

    Выполнены заодно только обод и диск (Рис. 4 б).


    Рис. 4. Конструктивные элементы автономных зубчатых колес:

    а – только обод; б – обод и ступица; в – обод, диск и ступица (толщина диска равна ширине обода); г - обод, диск и ступица
    ^ 3. Материалы и технологии изготовления зубчатых колес

    Зубчатые колеса в большинстве случаев изготавливают из сталей. Реже из чугунов, полимерных материалов и цветных металлов . Колеса из сталей используют как в открытых, так и в закрытых передачах относительно высокой мощности. Для изготовления колес открытых передач при окружной скорости до 6 м/с используют высокопрочный чугун. Колеса тихоходных и малонагруженных открытых передач можно изготавливать из серого чугуна. Колеса из полимерных материалов применяют в малонагруженных передачах, когда необходимо обеспечить бесшумную работу, так как эти материалы обладают высокими демпфирующими свойствами, т. е. способны поглощать энергию ударов.

    Производство стальных зубчатых колес может быть организовано в одну или две стадии. Одностадийное производство – это механическая обработка готового проката (прутка). В две стадии вначале изготавливают стальную заготовку методами свободной ковки, объемной штамповки или литья, затем проводят ее механическую обработку. Для повышения эксплуатационных свойств материалы колес подвергают термической или термохимической обработке: улучшению, закалке, цементации или азотированию. Улучшение проводят в объеме заготовки до ее механической обработки; закалку, цементацию и азотирование - рабочих поверхностей зубьев после их нарезки. Способ изготовления стальных колес определяется их размерами и программой выпуска. Колеса диаметром до 200 мм чаще всего изготавливают механической обработкой из прутка. На боковых плоских поверхностях таких изделий отчетливо различимы канавки, образованные в результате проходов токарного резца. Колеса диаметром от 200 до 500 мм чаще всего изготавливают с использованием кованых или штампованных заготовок. Боковые поверхности таких колес, не подвергнутые механической обработке, имеют однородную чистоту обработки без явно выраженных неровностей, так как она соответствует чистоте обработки формообразующего инструмента штампа. При больших диаметрах (более 500 мм) колеса изготавливают литыми. При малых тиражах выпуска или в индивидуальном производстве для изготовления слабонагруженных металлических колес любых размеров могут использоваться заготовки, отформованные литьем. При этом шероховатость боковых поверхностей относительно высока, так как она определяется контактом металлического расплава с формовочной смесью, основным компонентом которой является песок.

    Независимо от способа получения заготовки зубья на колесах получают способами нарезания или горячей накатки. Последний способ наиболее экономичен, позволяет повысить изгибную прочность зубьев, но снижает их размерную точность.

    Технологические приемы изготовления зубчатых колес из полимерных материалов наиболее производительны и экономичны, так как окончательное формообразование изделия реализуется за одну операцию. Такими операциями являются: литье под давлением из термопластичных материалов и прессование из термореактивных. Конфигурация оформляющей полости технологической оснастки полностью соответствует конфигурации зубчатого колеса с обеспечением высокой чистоты обработки по всей поверхности. Вместе с тем эксплуатация такой дорогостоящей оснастки и соответствующего формующего оборудования экономически оправданы только при больших тиражах выпуска деталей для низконагруженных передач. Вместе с тем в последние годы интенсивно развивается индустрия композиционных материалов на полимерной основе , содержащих высокопрочные волокна, сухие смазки, добавки, устраняющие хрупкость материала и др. Рецептура таких материалов, как правило, соответствует условиям эксплуатации изделия.

    Однако стоимость полимерных композиционных материалов значительно выше стоимости металлов. Поэтому из композиционных материалов на полимерной основе изготавливают зубчатые колеса в основном малой массы в конструкциях приборов точной механики и бытовой техники. Зубчатые передачи из полимерных материалов могут работать без смазки, поэтому они успешно применяются в оборудования пищевой промышленности.
    ^

    В инженерной практике решаются две задачи:

    Анализ существующего механизма, когда требуются измерения его геометрических параметров;

    В данной работе рассматриваются элементы, как анализа, так и синтеза, применительно к колесам зубчатых передач.

    Максимальная мощность, передаваемая зубчатой передачей, в значительной степени зависит от двух параметров: высоты зубьев H и делительных диаметров колес d . Оба эти параметра одновременно учитывает основная характеристика передачи – ее модуль:

    ,

    где z – число зубьев колеса. Чем крупнее зубья, тем меньше их количество при постоянном значении d и тем выше модуль.

    Предварительное значение модуля m " можно определить через высоту зуба H :

    Для цилиндрических колес m " = H / 2,5 .

    Ниже приведены ряды значений стандартного модуля m , наиболее часто применяемых в машиностроении (в реальном промышленном проектировании 1-й ряд предпочитают второму):

    1-й ряд: 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16; 20; 25; 32; 40 мм.

    2-й ряд: 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7; 9; 11; 14; 18; 22; 28; 36; 45 мм.

    В настоящей работе величину модуля m " следует уточнить по стандарту и принять значение m ближайшее большее из любого указанного ряда.

    При известных значениях параметров z и d модуль m " определяют из выражения:

    d = m z .

    Диаметр делительной окружности колеса d измерить невозможно. Поэтому с помощью измерительных устройств, например, штангенциркулем, оценивают диаметр вершин зубьев d a и диаметр впадин d f . При заранее заданных параметрах делительного диаметра и модуля расчетные значения d a и d f определяют из выражений:

    d a = d + 2∙ m ; d f = d – 2,4∙ m .

    Для косозубых колес угол наклона зуба β (Рис. 5) можно определить по зависимости:

    β = arccos ((m ∙ z)/(d – 2,4∙m)) .

    Рис. 5 Сечение зубчатого венца по дуге делительной окружности А - Б
    При зацеплении зубчатых колес обод воспринимает нагрузку от зубьев. Поэтому его толщина q должна быть достаточной, чтобы обеспечить как его прочность и жесткость, так и податливость. Податливость способствует равномерному распределению нагрузки между зубьями и по длине каждого зуба. Рекомендуется выполнять толщину обода в соответствии с формулой:

    q = (2,5…4,0) ∙ m , но не менее 8 мм.

    Тогда внутренний диаметр обода D 0 будет определяться из выражения:

    D 0 = d f - 2 q .

    Ступица служит для соединения колеса с валом и передачи вращающего момента, а ее торцы определяют положение колеса по длине вала. Для передачи вращающего момента отверстие d вал в ступице выполняют либо с посадкой с натягом либо со шпоночными или шлицевыми пазами (Рис 6). Размеры пазов зависят от диаметра вала, определяются стандартом и приведены в таблице 1.



    Рис 6 Шпоночное соединение

    Таблица 1

    Размеры сечений шпонок и пазов, мм, по ГОСТ 8788-68 *

    (В таблице: b – ширина шпонки и соответственно шпоночного паза; h – высота шпонки.)

    Длина ступицы L с m должна быть достаточной, чтобы обеспечить монтаж зубчатого колеса на валу без перекоса и работоспособность соединения ступицы с валом. Рекомендуется выполнять длину ступицы равной:

    L с m = (0,8…1,5) d вал ,

    но не менее ширины обода в , т.е. L с m ≥ в . Диаметр ступицы d с m принимают достаточным для обеспечения прочности и надежности соединения по выражению:

    d с m = 1,8 d вал .

    Толщина диска С должна быть достаточной, чтобы обеспечить жесткость колеса, и определяется в зависимости от способа его изготовления. Рекомендуется выполнять толщину диска у цилиндрических колес:

    Кованых и штампованных C = 0,3 · в ;

    Литых С = 0,2 ∙ в.

    d отв = 0,25 ∙(D 0 - d с m ).

    а располагать их на диаметре

    D отв = 0,5 ∙(D 0 + d с m ).

    На торцах обода и ступицы выполняют фаски, размер которых n × 45°. Параметр n определяется из выражения:

    n = (0,5…0,7) ∙ m .

    Сопряжение обода и диска, диска и ступицы выполняют по радиусу r , величина которого принимается в зависимости от диаметра колеса:

    при d а ≤ 500 мм - r = 5 мм; при d а > 500 мм - r = 7 мм.

    Зубчатое колесо должно быть зафиксировано на вале как в окружном, так и в осевом направлениях. Наиболее простым способом фиксации колеса является применение посадок с большим натягом или штифтов (Рис. 6 а ). В этих случаях обеспечивается фиксация колеса в обоих направлениях, Однако использование посадок с натягом связано с большими трудностями при монтаже и демонтаже узла. Поэтому для окружного фиксирования колеса чаще используют шпонки и шлицы. Эти виды соединений существенно облегчают монтаж и демонтаж узла, но требуют дополнительного фиксирования колеса в осевом направлении. В этих случаях осевое фиксирование осуществляется установочными винтами, пружинными кольцами, распорными втулками и т.д. (рис. 7 б, в, г ).


    Рис.7. Способы осевого фиксирования колеса: а - штифтом; б - установочным винтом; в - пружинными кольцами; г - распорной втулкой

    Порядок измерения параметров и их расчета приведены в бланке отчета о выполнении настоящей работы

    В результате изучения студент должен знать:

    Область применения зубчатых передач;
    - классификацию зубчатых передач.

    4.1.1 Роль и значение зубчатых передач в машиностроении

    Зубчатые передачи являются наиболее распространёнными типами механических передач . Они находят широкое применение во всех отраслях машиностроения, в частности в металлорежущих станках, автомобилях, тракторах, сельхозмашинах и т.д., в приборостроении, часовой промышленности и др. Их применяют для передачи мощностей от долей до десятков тысяч киловатт при окружных скоростях до 150 м/с и передаточных числах до нескольких сотен и даже тысяч, с диаметром колёс от долей миллиметра до 6 м и более.

    Зубчатая передача относиться к передачам зацеплением с непосредственным контактом пары зубчатых колёс. Меньшее из колёс передачи принято называть шестерней, а большее - колесом. Зубчатая передача предназначена в основном для передачи вращательного движения.

    4.1.2 Достоинства зубчатых передач

    1) высокая нагрузочная способность;
    2) малые габариты;
    3) большая надёжность и долговечность (40000 ч);
    4) постоянство передаточного числа;
    5) высокий КПД (до 0,97…0,98 в одной ступени);
    6) простота в эксплуатации.

    4.1.3 Недостатки зубчатых передач

    1) повышенные требования к точности изготовления и монтажа;
    2) шум при больших скоростях;
    3) высокая жёсткость, не позволяющая компенсировать динамические нагрузки.

    4.1.4. Классификация зубчатых передач

    1. По взаимному расположению геометрических осей валов различают передачи:br - с параллельными осями - цилиндрические (рис.2.3.1.а-г);
    - с пересекающимися осями - конические (рис.2.3.1.д; е);
    - со скрещивающимися осями - цилиндрические винтовые (рис.2.3.1.ж);
    - конические гипоидные и червячные (рис. 2.3.1.з);
    - реечная передача (рис. 2.3.1.и).

    Рисунок 2.3.1 Виды зубчатых передач

    2. В зависимости от взаимного расположения зубчатых колёс:

    - с внутренним зацеплением (направление вращения колёс совпадают).

    3. По расположению зубьев на поверхности колёс различают передачи:
    - прямозубые; косозубые; шевронные; с круговым зубом.

    4. По форме профиля зуба различают передачи:
    - эвольвентные;
    - с зацеплением М. Л. Новикова;
    - циклоидальные.

    5. По окружной скорости различают передачи:
    - тихоходные ();
    - среднескоростные

    Зубчатые передачи

    Зубчатая передача - Механизм, в котором два подвижных звена являются зубчатыми колесами, образующими с неподвижным звеном вращательную или поступательную пару

    Виды зубчатых передач: а, б, в - цилиндрические зубчатые передачи с внешним зацеплением; г - реечная передача; д - цилиндрическая передача с внутренним зацеплением; е - зубчатая винтовая передача; ж, з, и - конические зубчатые передачи; к - гипоидная передача

    В большинстве случаев зубчатая передача служит для передачи вращательного движения. В некоторых механизмах эту передачу применяют для преобразования вращательного движения в поступательное. Зубчатые передачи - наиболее распространенный тип передач в современном машиностроении и приборостроении; их применяют в широких диапазонах скоростей (до 100 м/с), мощностей (до десятков тысяч киловатт).

    Основные достоинства зубчатых передач по сравнению с другими передачами:

    Технологичность, постоянство передаточного числа;

    Высокая нагрузочная способность;

    Высокий КПД (до 0,97-0,99 для одной пары колес);

    Малые габаритные размеры по сравнению с другими видами передач при равных условиях;

    Большая надежность в работе, простота обслуживания;

    Сравнительно малые нагрузки на валы и опоры.

    К недостаткам зубчатых передач следует отнести:

    Невозможность бесступенчатого изменения передаточного числа;

    Высокие требования к точности изготовления и монтажа;

    Шум при больших скоростях; плохие амортизирующие свойства;

    Громоздкость при больших расстояниях между осями ведущего и ведомого валов;

    Потребность в специальном оборудовании и инструменте для нарезания зубьев;

    Зубчатая передача не предохраняет машину от возможных опасных перегрузок.

    Зубчатые передачи и колеса классифицируют по следующим признакам (см. рис. 1):

    По взаимному расположению осей колес - с параллельными осями (цилиндрические, см. рис. 1, а-д), с пересекающимися осями (конические, см. рис. 1, ж-и), со скрещивающимися осями (винтовые, см. рис. 1, е, к);

    По расположению зубьев относительно образующих колес - прямозубые, косозубые, шевронные и с криволинейным зубом;

    По конструктивному оформлению - открытые и закрытые;

    По окружной скорости - тихоходные (до 3 м/с), для средних скоростей (3-15 м/с), быстроходные (св. 15 м/с);

    По числу ступеней - одно- и многоступенчатые;

    По расположению зубьев в передаче и колесах - внешнее, внутреннее (см. рис. 1, д) и реечное зацепление (см. рис. 1, г);

    По форме профиля зуба - с эвольвентными, круговыми;

    По точности зацепления. Стандартом предусмотрено 12 степеней точности. Практически передачи общего машиностроения изготовляют от шестой до десятой степени точности. Передачи, изготовленные по шестой степени точности, используют для наиболее ответственных случаев.

    Из перечисленных выше зубчатых передач наибольшее распространение получили цилиндрические прямозубые и косозубые передачи, как наиболее простые в изготовлении и эксплуатации. Преимущественное распространение получили передачи с зубьями эвольвентного профиля, которые изготавливаются массовым методом обкатки на зубофрезерных или зубодолбежных станках. Достоинство эвольвентного зацепления состоит в том, что оно мало чувствительно к колебанию межцентрового расстояния. Другие виды зацепления применяются пока ограниченно. Так, циклоидальное зацепление, при котором возможна работа шестерен с очень малым числом зубьев (2-3), не может быть, к сожалению, изготовлено современным высокопроизводительным методом обкатки, поэтому шестерни этого зацепления трудоемки в изготовлении и дороги; новое пространственное зацепление Новикова пока еще не получило массового распространения, вследствие большой чувствительности к колебаниям межцентрового расстояния.

    Прямозубые колёса (около 70%) применяют при невысоких и средних скоростях, когда динамические нагрузки от неточности изготовления невелики, в планетарных, открытых передачах, а также при необходимости осевого перемещения колёс.

    Косозубые колёса (более 30%) имеют большую плавность хода и применяются для ответственных механизмов при средних и высоких скоростях.

    Шевронные колёса имеют достоинства косозубых колёс плюс уравновешенные осевые силы и используются в высоконагруженных передачах.

    Конические передачи применяют только в тех случаях, когда это необходимо по условиям компоновки машины; винтовые - лишь в специальных случаях.

    Колёса внутреннего зацепления вращаются в одинаковых направлениях и применяются обычно в планетарных передачах.

    Для изготовления зубчатых колес применяют следующие материалы :

    Сталь углеродистую обыкновенного качества марок Ст5, Ст6; качественную сталь марок 35, 40, 45, 50, 55; легированную сталь марок 12ХНЗА, 30ХГС, 40Х, 35Х, 40ХН, 50Г; сталь 35Л, 45Л, 55Л;

    Серый чугун марок СЧ10, СЧ15, СЧ20, СЧ25, СЧ30, СЧ40, высококачественный чугун марок ВЧ50-2, ВЧ45-5;

    Неметаллические материалы (текстолит марок ПТК, ПТ, ПТ-1, лигнофоль, бакелит, капрон и др.).

    Практикой эксплуатации и специальными исследованиями установлено, что нагрузка, допускаемая по контактной прочности зубьев, определяется в основном твердостью материала. Высокую твердость в сочетании с другими характеристиками, а, следовательно, малые габариты и массу передачи можно получить при изготовлении зубчатых колес из сталей, подвергнутых термообработке. Сталь в настоящее время - основной материал для изготовления зубчатых колес и в особенности для зубчатых колес высоконагруженных передач.

    Важнейшими критериями работоспособности зубчатых колёс приводов являются объёмная прочность зубьев и износостойкость их активных поверхностей. Нагрузочная способность хорошо смазанных поверхностей ограничивается сопротивлением выкрашиванию. Для уменьшения расхода материалов назначают высокую твёрдость трущихся поверхностей.

    Несущая способность зубчатых передач по контактной прочности тем выше, чем выше поверхностная твердость зубьев. Повышение твердости в два раза позволяет уменьшить массу редуктора примерно в четыре раза.

    В зависимости от твердости (или термообработки ) стальные зубчатые, колеса разделяют на две основные группы: твердостью Н 350 НВ - с объемной закалкой, закалкой ТВЧ, цементацией, азотированием и др. Эти группы различны по технологии, нагрузочной способности и способности к приработке.

    Объемная закалка - наиболее простой способ получения высокой твердости зубьев. При этом зуб становится твердым по всему объему. Для объемной закалки используют углеродистые и легированные стали со средним содержанием углерода 0,35...0,5% (стали 45, 40Х, 40ХН и т. д.). Твердость на поверхности зуба 45...55 HRC.

    Недостатки объемной закалки : коробление зубьев и необходимость последующих отделочных операций, понижение изгибной прочности при ударных нагрузках (материал приобретает хрупкость); ограничение размеров заготовок, которые могут воспринимать объемную закалку. Последнее связано с тем, что для получения необходимой твердости при закалке скорость охлаждения не должна быть ниже критической. С увеличением размеров сечений детали скорость охлаждения падает, и если ее значение будет меньше критической, то получается так называемая мягкая закалка. Мягкая закалка дает пониженную твердость.

    Объемную закалку во многих случаях заменяют поверхностными термическими и химико-термическими видами обработки, которые обеспечивают высокую поверхностную твердость (высокую контактную прочность) при сохранении вязкой сердцевины зуба (высокой изгибной прочности при ударных нагрузках).

    Поверхностная закалка токами высокой частоты или пламенем ацетиленовой горелки обеспечивает Н = (48...54) HRC и применима для сравнительно крупных зубьев (m > 5 мм). При малых модулях опасно прокаливание зуба насквозь, что делает зуб хрупким и сопровождается его короблением. При относительно тонком поверхностном закаливании зуб искажается мало. И все же без дополнительных отделочных операций трудно обеспечить степень точности выше 8-й. Закалка ТВЧ требует специального оборудования и строгого соблюдения режимов обработки. Стоимость обработки ТВЧ значительно возрастает с увеличением размеров колес. Для поверхностной закалки используют стали 40Х, 40ХН, 45 и др.

    Цементация (насыщение углеродом поверхностного слоя с последующей закалкой) - длительный и дорогой процесс. Однако она обеспечивает очень высокую твердость (58....63HRC). При закалке после цементации форма зуба искажается, а поэтому требуются отделочные операции. Для цементации применяют низкоуглеродистые стали простые (сталь 15 и 20) и легированные (20Х, 12ХНЗА и др.). Легированные стали обеспечивают повышенную прочность сердцевины и этим предохраняют продавливание хрупкого поверхностного слоя при перегрузках. Глубина цементации около 0,1 ...0,15 от толщины зуба, но не более 1,5...2 мм. При цементации хорошо сочетаются весьма высокие контактная и изгибная прочности. Ее применяют в изделиях, где масса и габариты имеют решающее значение (транспорт, авиация и т. п.).

    Нитроцементация - насыщение углеродом в газовой среде. При этом по сравнению с цементацией сокращаются длительность и стоимость процесса,- упрочняется тонкий поверхностный слой (0,3...0,8 мм) до 60...63 HRC, коробление уменьшается, что позволяет избавиться от последующего шлифования. Нитроцементация удобна в массовом производстве и получила широкое применение в редукторах общего назначения, в автомобилестроении и других отраслях - материалы 25ХГМ, 25ХГТ и др.

    Азотирование (насыщение поверхностного слоя азотом) обеспечивает не меньшую твердость, чем при цементации.

    Основные элементы зубчатой передачи. Термины, определения и обозначения

    Одноступенчатая зубчатая передача состоит из двух зубчатых колес - ведущего и ведомого. Меньшее по числу зубьев из пары колес называют шестерней, а большее колесом. Термин «зубчатое колесо» является общим. Параметрам шестерни (ведущего колеса) приписывают при обозначении нечетные индексы (1, 3, 5 и т. д.), а параметрам ведомого колеса - четные (2, 4, 6 и т. д.).

    Зубчатое зацепление характеризуется следующими основными параметрами:

    da - диаметр вершин зубьев; dr - диаметр впадин зубьев;

    da - начальный диаметр; d - делительный диаметр;

    рt - окружной шаг; h - высота зуба;

    ha - высота ножки зуба; с - радиальный зазор;

    b - ширина венца (длина зуба); еt - окружная ширина впадины зуба;

    st - окружная толщина зуба; аw - межосевое расстояние;

    а - делительное межосевое расстояние; Z - число зубьев.

    Делительная окружность - окружность, по которой обкатывается инструмент при нарезании. Делительная окружность связана с колесом и делит зуб на головку и ножку.

    Лекция 12. Назначение. Классификация. Зубчатые передачи.

    Раздел 6 Механические передачи.

    Контрольные вопросы

    1. Где применяют подшипники? Что представляет собой подшипник скольже­ния? Какие подшипники скольжения (по конструкции) вы знаете?

    2. Какой материал используют для изготовления подшипников скольжения? На­зовите режимы трения при работе подшипников скольжения.

    3. Как рассчитывают подшипники скольжения?

    4. Как устроен подшипник качения? Какие существуют разновидности

    подшипников качения?

    5. Какие вы знаете типы подшипников качения?

    6. Как обозначают подшипники качения?

    7. Как проводится расчет подшипников качения?

    Большинство современных машин и установок состоят из неподвижной части – статора и подвижной – ротора. Чтобы подвижной части машины или аппарата (шпиндель, вал с мешалкой и т.д.) передать энергию и движение, необходимы специальные устройства, в качестве которых применяют двигатели и передачи, образующие привод. Функция передачи движения в большинстве случаев совмещается с преобразованием его параметров и соответствующим изменением действующих усилий, моментов, а иногда и с преобразованием самого вида движения (вращательного в поступательное или др.). Передачи являются важным элементом приводов машин. Наибольшее распространение получили механические передачи. Они используются преимущественно для передачи наиболее распространенного в машинах вращательного движения и реже – для преобразования вращательного движения в поступательное или наоборот.

    Механические передачи различаются по принципу действия: на фрикционные , действующие за счет сил трения, создаваемых между элементами передачи (ременные, фрикционные) и передачи зацеплением (зубчатые, червячные, винтовые).

    По характеру изменения скорости передачи бывают: понижающие (редукторы) и повышающие (мультипликаторы), соответственно уменьшающие или увеличивающие скорость вращения ведомого (выходного) вала по сравнению со скоростью ведущего (входного) вала передачи. При этом в зависимости от назначения и устройства передачи отношение угловых скоростей может быть постоянным или переменным (регулируемым). В последнем случае возможно ступенчатое или бесступенчатое регулирование в определенных пределах.

    По взаимному расположению валов в пространстве передача движения осуществляется между параллельными, пересекающимися или перекрещивающимися валами.

    По конструктивному оформлению передачи бывают – открытые, не имеющие общего, закрывающего их корпуса и закрытые, заключенные в общий корпус.

    Основными кинематическими характеристиками передач вращения являются угловые скорости , или числа оборотов в единицу времени, совместно работающих валов и их отношение, именуемое передаточным отношением

    Энергетическими характеристиками механических передач являются передаваемая мощность P кВт и коэффициент полезного действия (к.п.д.) h – отношение мощности сил полезных сопротивлений к мощности движущих сил

    Так как мощность и момент на любом валу связаны зависимостями

    кВт или кГм,

    запишем соотношения между моментами на ведущем Т 1 и ведомом Т 2 валах

    Для многоступенчатых передач, составленных из нескольких одноступенчатых, справедливы зависимости

    ; .

    Механические передачи обладают многими достоинствами, обеспечивающими их широкое использование в современном машиностроении. Они компактны, отличаются высокой надежностью в эксплуатации, позволяют относительно просто осуществлять необходимые преобразования параметров и видов движения, имеют высокий к.п.д.

    Зубчатые передачи. Зубчатые передачи являются разновидностью механических передач, работающих на принципе зацепления. Их применяют для передачи вращательного движения между валами с параллельными, пересекающимися и перекрещивающимися осями, а также для преобразования вращательного движения в поступательное и наоборот.

    Передача вращательного движения между параллельными валами осуществляется цилиндрическими колесами с прямыми (рис.6.1а ), косыми (рис.6.1б ) и шевронными (рис.6.1в ) зубьями. Различают передачи внешнего (рис.6.1а-в ) и внутреннего зацепления (рис.6.1г ).


    Преобразование вращательного движения в поступательное и наоборот осуществляется цилиндрическим колесом и рейкой (рис.6.1д ). Передачи между валами с пересекающимися осями осуществляются коническими колесами с прямыми (рис.6.1е )., круговыми (рис.6.1ж ). и тангенциальными (рис.6.1з ) зубьями.

    Между перекрещивающимися валами вращение передается с помощью зубчато – винтовых передач.

    Зубчатые передачи составляют наиболее распространенную группу передач благодаря таким достоинствам, как малые габариты, высокий к.п.д., постоянство передаточного отношения, возможность применения в широком диапазоне скоростей и передаточных отношений, надежность в работе.

    Геометрия и кинематика эвольвентного зацепления . Зубчатые передачи в преобладающем большинстве изготавливают с эвольвентным профилем зубьев. Это объясняется тем, что эвольвентное зацепление имеет ряд существенных достоинств: простое изготовление и постоянство передаточного отношения, малые скорости скольжения и долговечность колес.

    Эвольвентой (рис.6.2) называют кривую, описываемую точкой С прямой АВ , перекатывающейся без скольжения по окружности диаметра d b , которую называют основной окружностью.

    Для таких передач общая нормаль NN к взаимодействующим профилям (рис.6.3), в любой момент движения сопряженных зубьев должна проходить через точку П – полюс зацепления, лежащий на линиицентров и делящий межосевое расстояние на отрезки, обратно пропорциональные передаточному отношению , где d ω2 и d ω1 – диаметры воображаемых окружностей, касающихся друг друга в полюсе зацепления П и перекатывающихся при вращении одна по другой без скольжения. Эти окружности называются начальными окружностями. Прямая NN называется линией зацепления , т.к. она является траекторией точек контакта сопряженных зубьев при вращении колес. Угол α ω между линией зацепления и прямой, перпендикулярной межосевой линии О 1 О 2 называется углом зацепления.

    Вершины и впадины зубьев очерчиваются соответственно окружностями выступов с диаметрами, и впадин – , .

    В качестве исходного контура для эвольвентного зацепления принят контур, расположенный на прямой – рейка (рис.6.4). Линия а-а, на которой толщина зуба равна ширине впадины, называется средней линией рейки.

    Расстояние р между соответственными точками профилей соседних зубьев, измеренное вдоль средней линии, называется шагом зацепления , а отношение – модулем зацепления.

    Применительно к зубчатому колесу окружность, на которой шаг равен шагу исходного контура р , называется делительной окружностью d. Очевидно, что, где z – число зубьев колеса. Откуда. Соответственно, окружной модуль представляет собой частное от деления диаметра делительной окружности на число зубьев колеса. Часть зуба, расположенная между окружностями выступов и делительной, называется головкой зуба h a , а между окружностью впадин и делительной – ножкой зуба h f .

    Цилиндр, диаметр которого равен диаметру делительной окружности, называется делительным цилиндром. Кратчайшее расстояние по делительному цилиндру между одноименными профильными поверхностями двух смежных зубьев называется нормальным шагом р n (рис.6.5). Справедлива зависимость, где b – угол наклона линии зуба. Нормальный модуль вычисляется по формуле. Для прямозубых передач (b = 0) окружные и нормальные шаги и модули соответственно совпадают. Величины модулей определяются стандартом. Для косозубых цилиндрических колес стандартными являются нормальные модули.

    Для цилиндрических зубчатых передачдолжны выполняться следующие соотношения:

    Межосевое расстояние

    Силы, действующие в цилиндрических передачах (рис.6.6). Нормальную силу F n , давления одного зуба на другой, возникающую при работе сопряженных зубьев можно разложить на и, а, в свою очередь, на и.

    В результате имеем

    ,

    где F t – окружная сила, Т – вращающий момент, d – делительный диаметр.

    Из схемы сил

    ,

    где F r – радиальная, а F a – осевая силы, – угол зацепления, – угол наклона линии зуба.

    Нормальная к поверхности зуба сила .

    Расчет зубьев цилиндрических передач и расчет на контактную прочность в большинстве случаев является основой для определения габаритных размеров передачи. Исходной зависимостью для расчета контактных напряжений (рис.6.7), возникающих на рабочих поверхностях зубьев служит формула Герца-Беляева

    ,

    где Z Е – коэффициент, учитывающий механические свойства контактирующих материалов; q – нормальная нагрузка на единицу длины контактной линии; – приведенный радиус кривизны контактирующих поверхностей, R 1 и R 2 – радиусы кривизны профилей контактирующих зубьев.

    Подставляя в эту формулу параметры и характеристики цилиндрических зубчатых передач с эвольвентным профилем зубьев, после ряда преобразований получим формулу для расчета контактной прочности рабочих поверхностей зубьев

    ,

    где Z Е – коэффициент, учитывающий механические свойства материалов шестерни и колеса; Z e – коэффициент, учитывающий суммарную длину контактных линий; Z Н – коэффициент, учитывающий форму сопряженных поверхностей зубьев; К Н к оэффициент нагрузки (учитывает динамическую нагрузку и неравномерность распределения нагрузки по ширине зуба и между зубьями); F t – окружная сила на делительном диаметре d 1 ; b – ширина венца колеса; u – передаточное число.